3.6.23 \(\int \frac {(c+d x+e x^2+f x^3) (a+b x^4)^{3/2}}{x^9} \, dx\) [523]

3.6.23.1 Optimal result
3.6.23.2 Mathematica [C] (verified)
3.6.23.3 Rubi [A] (verified)
3.6.23.4 Maple [C] (verified)
3.6.23.5 Fricas [F]
3.6.23.6 Sympy [C] (verification not implemented)
3.6.23.7 Maxima [F]
3.6.23.8 Giac [F]
3.6.23.9 Mupad [F(-1)]

3.6.23.1 Optimal result

Integrand size = 30, antiderivative size = 377 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=-\frac {1}{560} b \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right ) \sqrt {a+b x^4}+\frac {12 b^{3/2} f x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \left (a+b x^4\right )^{3/2}+\frac {1}{2} b^{3/2} e \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {3 b^2 c \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{16 \sqrt {a}}-\frac {12 \sqrt [4]{a} b^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 b^{5/4} \left (5 \sqrt {b} d+21 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{35 \sqrt [4]{a} \sqrt {a+b x^4}} \]

output
-1/840*(105*c/x^8+120*d/x^7+140*e/x^6+168*f/x^5)*(b*x^4+a)^(3/2)+1/2*b^(3/ 
2)*e*arctanh(x^2*b^(1/2)/(b*x^4+a)^(1/2))-3/16*b^2*c*arctanh((b*x^4+a)^(1/ 
2)/a^(1/2))/a^(1/2)-1/560*b*(105*c/x^4+160*d/x^3+280*e/x^2+672*f/x)*(b*x^4 
+a)^(1/2)+12/5*b^(3/2)*f*x*(b*x^4+a)^(1/2)/(a^(1/2)+x^2*b^(1/2))-12/5*a^(1 
/4)*b^(5/4)*f*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1 
/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a 
^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/(b*x^4+a)^(1 
/2)+2/35*b^(5/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b 
^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2)) 
*(21*f*a^(1/2)+5*d*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2* 
b^(1/2))^2)^(1/2)/a^(1/4)/(b*x^4+a)^(1/2)
 
3.6.23.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.31 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.46 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=-\frac {\sqrt {a+b x^4} \left (240 a^2 d x \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},-\frac {3}{2},-\frac {3}{4},-\frac {b x^4}{a}\right )+7 \left (15 c \left (a \left (2 a+5 b x^4\right ) \sqrt {1+\frac {b x^4}{a}}+3 b^2 x^8 \text {arctanh}\left (\sqrt {1+\frac {b x^4}{a}}\right )\right )+40 a^2 e x^2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{2},-\frac {1}{2},-\frac {b x^4}{a}\right )+48 a^2 f x^3 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {5}{4},-\frac {1}{4},-\frac {b x^4}{a}\right )\right )\right )}{1680 a x^8 \sqrt {1+\frac {b x^4}{a}}} \]

input
Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^9,x]
 
output
-1/1680*(Sqrt[a + b*x^4]*(240*a^2*d*x*Hypergeometric2F1[-7/4, -3/2, -3/4, 
-((b*x^4)/a)] + 7*(15*c*(a*(2*a + 5*b*x^4)*Sqrt[1 + (b*x^4)/a] + 3*b^2*x^8 
*ArcTanh[Sqrt[1 + (b*x^4)/a]]) + 40*a^2*e*x^2*Hypergeometric2F1[-3/2, -3/2 
, -1/2, -((b*x^4)/a)] + 48*a^2*f*x^3*Hypergeometric2F1[-3/2, -5/4, -1/4, - 
((b*x^4)/a)])))/(a*x^8*Sqrt[1 + (b*x^4)/a])
 
3.6.23.3 Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 377, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2364, 27, 2364, 27, 2371, 798, 73, 221, 2424, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^4\right )^{3/2} \left (c+d x+e x^2+f x^3\right )}{x^9} \, dx\)

\(\Big \downarrow \) 2364

\(\displaystyle -6 b \int -\frac {\left (168 f x^3+140 e x^2+120 d x+105 c\right ) \sqrt {b x^4+a}}{840 x^5}dx-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{140} b \int \frac {\left (168 f x^3+140 e x^2+120 d x+105 c\right ) \sqrt {b x^4+a}}{x^5}dx-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 2364

\(\displaystyle \frac {1}{140} b \left (-2 b \int -\frac {672 f x^3+280 e x^2+160 d x+105 c}{4 x \sqrt {b x^4+a}}dx-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \int \frac {672 f x^3+280 e x^2+160 d x+105 c}{x \sqrt {b x^4+a}}dx-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 2371

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \left (105 c \int \frac {1}{x \sqrt {b x^4+a}}dx+\int \frac {672 f x^2+280 e x+160 d}{\sqrt {b x^4+a}}dx\right )-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \left (\frac {105}{4} c \int \frac {1}{x^4 \sqrt {b x^4+a}}dx^4+\int \frac {672 f x^2+280 e x+160 d}{\sqrt {b x^4+a}}dx\right )-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \left (\frac {105 c \int \frac {1}{\frac {x^8}{b}-\frac {a}{b}}d\sqrt {b x^4+a}}{2 b}+\int \frac {672 f x^2+280 e x+160 d}{\sqrt {b x^4+a}}dx\right )-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \left (\int \frac {672 f x^2+280 e x+160 d}{\sqrt {b x^4+a}}dx-\frac {105 c \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}\right )-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 2424

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \left (\int \left (\frac {280 e x}{\sqrt {b x^4+a}}+\frac {672 f x^2+160 d}{\sqrt {b x^4+a}}\right )dx-\frac {105 c \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}\right )-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{140} b \left (\frac {1}{2} b \left (\frac {16 \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (21 \sqrt {a} f+5 \sqrt {b} d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{\sqrt [4]{a} b^{3/4} \sqrt {a+b x^4}}-\frac {672 \sqrt [4]{a} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{b^{3/4} \sqrt {a+b x^4}}-\frac {105 c \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}+\frac {140 e \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{\sqrt {b}}+\frac {672 f x \sqrt {a+b x^4}}{\sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}\right )-\frac {1}{4} \sqrt {a+b x^4} \left (\frac {105 c}{x^4}+\frac {160 d}{x^3}+\frac {280 e}{x^2}+\frac {672 f}{x}\right )\right )-\frac {1}{840} \left (a+b x^4\right )^{3/2} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )\)

input
Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^9,x]
 
output
-1/840*(((105*c)/x^8 + (120*d)/x^7 + (140*e)/x^6 + (168*f)/x^5)*(a + b*x^4 
)^(3/2)) + (b*(-1/4*(((105*c)/x^4 + (160*d)/x^3 + (280*e)/x^2 + (672*f)/x) 
*Sqrt[a + b*x^4]) + (b*((672*f*x*Sqrt[a + b*x^4])/(Sqrt[b]*(Sqrt[a] + Sqrt 
[b]*x^2)) + (140*e*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/Sqrt[b] - (105* 
c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(2*Sqrt[a]) - (672*a^(1/4)*f*(Sqrt[a] 
+ Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*Arc 
Tan[(b^(1/4)*x)/a^(1/4)], 1/2])/(b^(3/4)*Sqrt[a + b*x^4]) + (16*(5*Sqrt[b] 
*d + 21*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqr 
t[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(a^(1/4)*b^(3/ 
4)*Sqrt[a + b*x^4])))/2))/140
 

3.6.23.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2364
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{u 
 = IntHide[x^m*Pq, x]}, Simp[u*(a + b*x^n)^p, x] - Simp[b*n*p   Int[x^(m + 
n)*(a + b*x^n)^(p - 1)*ExpandToSum[u/x^(m + 1), x], x], x]] /; FreeQ[{a, b} 
, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m + Expon[Pq, x] + 1 
, 0]
 

rule 2371
Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[Coeff[Pq, 
x, 0]   Int[1/(x*Sqrt[a + b*x^n]), x], x] + Int[ExpandToSum[(Pq - Coeff[Pq, 
 x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IG 
tQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]
 

rule 2424
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, 
 x], j, k}, Int[Sum[x^j*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2 
*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, p}, 
 x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]
 
3.6.23.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.25 (sec) , antiderivative size = 295, normalized size of antiderivative = 0.78

method result size
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (2352 b f \,x^{7}+1120 b e \,x^{6}+720 b d \,x^{5}+525 b c \,x^{4}+336 a f \,x^{3}+280 a e \,x^{2}+240 a d x +210 a c \right )}{1680 x^{8}}+\frac {b^{2} \left (\frac {160 d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {672 i f \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}+\frac {140 e \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{\sqrt {b}}-\frac {105 c \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2 \sqrt {a}}\right )}{280}\) \(295\)
elliptic \(-\frac {a c \sqrt {b \,x^{4}+a}}{8 x^{8}}-\frac {a d \sqrt {b \,x^{4}+a}}{7 x^{7}}-\frac {a e \sqrt {b \,x^{4}+a}}{6 x^{6}}-\frac {a f \sqrt {b \,x^{4}+a}}{5 x^{5}}-\frac {5 b c \sqrt {b \,x^{4}+a}}{16 x^{4}}-\frac {3 b d \sqrt {b \,x^{4}+a}}{7 x^{3}}-\frac {2 b e \sqrt {b \,x^{4}+a}}{3 x^{2}}-\frac {7 b f \sqrt {b \,x^{4}+a}}{5 x}+\frac {4 b^{2} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b^{\frac {3}{2}} e \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{2}+\frac {12 i b^{\frac {3}{2}} f \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {3 b^{2} c \,\operatorname {arctanh}\left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{16 \sqrt {a}}\) \(351\)
default \(e \left (\frac {b^{\frac {3}{2}} \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2}-\frac {a \sqrt {b \,x^{4}+a}}{6 x^{6}}-\frac {2 b \sqrt {b \,x^{4}+a}}{3 x^{2}}\right )+d \left (-\frac {a \sqrt {b \,x^{4}+a}}{7 x^{7}}-\frac {3 b \sqrt {b \,x^{4}+a}}{7 x^{3}}+\frac {4 b^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+c \left (-\frac {3 b^{2} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{16 \sqrt {a}}-\frac {a \sqrt {b \,x^{4}+a}}{8 x^{8}}-\frac {5 b \sqrt {b \,x^{4}+a}}{16 x^{4}}\right )+f \left (-\frac {a \sqrt {b \,x^{4}+a}}{5 x^{5}}-\frac {7 b \sqrt {b \,x^{4}+a}}{5 x}+\frac {12 i b^{\frac {3}{2}} \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(357\)

input
int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^9,x,method=_RETURNVERBOSE)
 
output
-1/1680*(b*x^4+a)^(1/2)*(2352*b*f*x^7+1120*b*e*x^6+720*b*d*x^5+525*b*c*x^4 
+336*a*f*x^3+280*a*e*x^2+240*a*d*x+210*a*c)/x^8+1/280*b^2*(160*d/(I/a^(1/2 
)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2) 
^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+672*I*f*a^ 
(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/ 
2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1 
/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))+140*e*ln(x^2*b^(1/ 
2)+(b*x^4+a)^(1/2))/b^(1/2)-105/2*c/a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1 
/2))/x^2))
 
3.6.23.5 Fricas [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{9}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^9,x, algorithm="fricas")
 
output
integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d* 
x + a*c)*sqrt(b*x^4 + a)/x^9, x)
 
3.6.23.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 6.50 (sec) , antiderivative size = 444, normalized size of antiderivative = 1.18 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=\frac {a^{\frac {3}{2}} d \Gamma \left (- \frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{4}, - \frac {1}{2} \\ - \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{7} \Gamma \left (- \frac {3}{4}\right )} + \frac {a^{\frac {3}{2}} f \Gamma \left (- \frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, - \frac {1}{2} \\ - \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{5} \Gamma \left (- \frac {1}{4}\right )} + \frac {\sqrt {a} b d \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac {1}{4}\right )} - \frac {\sqrt {a} b e}{2 x^{2} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {\sqrt {a} b f \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} - \frac {a^{2} c}{8 \sqrt {b} x^{10} \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {3 a \sqrt {b} c}{16 x^{6} \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {a \sqrt {b} e \sqrt {\frac {a}{b x^{4}} + 1}}{6 x^{4}} - \frac {b^{\frac {3}{2}} c \sqrt {\frac {a}{b x^{4}} + 1}}{4 x^{2}} - \frac {b^{\frac {3}{2}} c}{16 x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {b^{\frac {3}{2}} e \sqrt {\frac {a}{b x^{4}} + 1}}{6} + \frac {b^{\frac {3}{2}} e \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{2} - \frac {3 b^{2} c \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{16 \sqrt {a}} - \frac {b^{2} e x^{2}}{2 \sqrt {a} \sqrt {1 + \frac {b x^{4}}{a}}} \]

input
integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**9,x)
 
output
a**(3/2)*d*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**4*exp_polar(I*pi) 
/a)/(4*x**7*gamma(-3/4)) + a**(3/2)*f*gamma(-5/4)*hyper((-5/4, -1/2), (-1/ 
4,), b*x**4*exp_polar(I*pi)/a)/(4*x**5*gamma(-1/4)) + sqrt(a)*b*d*gamma(-3 
/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/a)/(4*x**3*gamma(1/ 
4)) - sqrt(a)*b*e/(2*x**2*sqrt(1 + b*x**4/a)) + sqrt(a)*b*f*gamma(-1/4)*hy 
per((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - a** 
2*c/(8*sqrt(b)*x**10*sqrt(a/(b*x**4) + 1)) - 3*a*sqrt(b)*c/(16*x**6*sqrt(a 
/(b*x**4) + 1)) - a*sqrt(b)*e*sqrt(a/(b*x**4) + 1)/(6*x**4) - b**(3/2)*c*s 
qrt(a/(b*x**4) + 1)/(4*x**2) - b**(3/2)*c/(16*x**2*sqrt(a/(b*x**4) + 1)) - 
 b**(3/2)*e*sqrt(a/(b*x**4) + 1)/6 + b**(3/2)*e*asinh(sqrt(b)*x**2/sqrt(a) 
)/2 - 3*b**2*c*asinh(sqrt(a)/(sqrt(b)*x**2))/(16*sqrt(a)) - b**2*e*x**2/(2 
*sqrt(a)*sqrt(1 + b*x**4/a))
 
3.6.23.7 Maxima [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{9}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^9,x, algorithm="maxima")
 
output
1/32*(3*b^2*log((sqrt(b*x^4 + a) - sqrt(a))/(sqrt(b*x^4 + a) + sqrt(a)))/s 
qrt(a) - 2*(5*(b*x^4 + a)^(3/2)*b^2 - 3*sqrt(b*x^4 + a)*a*b^2)/((b*x^4 + a 
)^2 - 2*(b*x^4 + a)*a + a^2))*c + integrate((b*f*x^6 + b*e*x^5 + b*d*x^4 + 
 a*f*x^2 + a*e*x + a*d)*sqrt(b*x^4 + a)/x^8, x)
 
3.6.23.8 Giac [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{9}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^9,x, algorithm="giac")
 
output
integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^9, x)
 
3.6.23.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx=\int \frac {{\left (b\,x^4+a\right )}^{3/2}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^9} \,d x \]

input
int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^9,x)
 
output
int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^9, x)